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Abstract We consider a mean field type equation for ballistic aggregation of particles
whose density function depends both on the mass and momentum of the particles. For the
case of a constant aggregation rate we prove the existence of self-similar solutions and the
convergence of more general solutions to them. We are able to estimate the large time decay
of some moments of general solutions or to build some new classes of self-similar solutions
for several classes of mass and/or momentum dependent rates.

Keywords Aggregation · Ballistic · Smoluchowski equation · Self similar · Mass ·
Momentum

1 Introduction

The concern of this work is to establish quantitative estimates on the asymptotic behavior
of the solutions to some Smoluchowski like models for ballistic aggregation. By ballistic
aggregation, also called kinetic coalescence in previous works [7, 13], we mean aggregation
phenomena taking place in a system of particles whose density function depends on mass
and momentum. It differs from the simplest aggregation mechanism introduced by Smolu-
chowski [26] in whose model the particles density function only depends on the mass. The
close relation between the ballistic aggregation of particles and Smoluchowski type equa-
tions is presented in the survey [18].

In order to be more precise let us denote by P = Py with y = (m,p) a particle of mass
m > 0 and momentum p ∈ R

d . The space of particles states is then Y = R+ × R
d and

the velocity of the particle Py is v = p/m. We assume that at a microscopic level (the
level of particles) the rate of collision of two particles P = Py and P ′ = Py′ is a given
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nonnegative function a = a(y, y ′) and when these two particles collide they join to form
one aggregated particle P ′′ = Py′′ in such a way that the mechanism conserves total mass
and total momentum. In other words, the microscopic mechanism reads

Py + Py′
a(y,y′)−→ Py′′ ,

with y ′′ = (m′′,p′′) given by

m′′ = m + m′, p′′ = p + p′.

It is worth mentioning that the above reaction dissipates kinetic energy since, denoting E � =
m�|v�|2/2 the kinetic energy of particle P �, we have

E ′′ − E − E ′ = 1

2

|p + p′|2
m + m′ − 1

2

|p|2
m

− 1

2

|p′|2
m′

= −1

2

mm′

m + m′ |v − v′|2 ≤ 0.

At the mesoscopic (or statistical or mean field) level, the system is described at time
t ≥ 0 by the density function f (t, y) ≥ 0 of particles with state y ∈ Y . For a given initial
distribution fin, the evolution of the density f is described by the Smoluchoswki/Boltzmann
like equation:

∂tf = Q(f ) in (0,+∞) × Y, (1.1)

f (0) = f in in Y. (1.2)

The collision operator Q(f ) is given by Q(f ) = Q1(f ) − Q2(f ), where

Q1(f )(y) = 1

2

∫
Rd

∫ m

0
a(y ′, y − y ′)f (y ′)f (y − y ′) dm′dp′, (1.3)

Q2(f )(y) =
∫

Rd

∫ ∞

0
a(y, y ′)f (y)f (y ′) dm′dp′. (1.4)

The form generally accepted of the kernel a(y, y ′) for ballistic aggregation is a(y, y ′) =
A(m,m′)B(v, v′) where A(m,m′) depends on the sticking probability and the collision cross
section and B(v, v′) is the collision velocity (see for example [32]). Different precise ex-
pressions may be found in the literature. The example a(m,m′) = γ0(m

1/3 +m′1/3)3 may be
found in [11] for the aggregation of protoplanetary dust. It is obtained considering the colli-
sion cross section proportional to the surface of the two colliding particles (m1/3 + m′1/3)2

and the relative velocity proportional to m1/3 + m′1/3. In [23] the expression

a(y, y ′) = aHS(y, y ′) := (m1/3 + m′1/3)2|v − v′|, (1.5)

is used in the study of the collapse of rotating dusty protostellar clouds. This second example
also appears in the literature of combustion, for example in [31], to describe the aggregation
of particles in sprays. Due to the form of its velocity dependence we denote it as aHS where
HS stands for hard spheres. A slightly different type of coagulation kernel is considered
in [3] and [14] in stellar dynamics and plasma physics, again in an astrophysical context,



424 M. Escobedo, S. Mischler

where the effects of particle interaction via Newtonian potential on the Vlasov-Boltzmann-
Smoluchowski are discussed. The resulting coagulation kernel is

a(y, y ′) = aNP (y, y ′) := m + m′

mm′
1

|v − v′|2 , (1.6)

where NP stands for Newtonian potential. We refer to [6, 15, 29, 30] and to the references
in [7, 13, 24] for a more detailed discussion on the physics of aggregation.

In the context described above it is very natural to impose that the system has finite initial
particle number, total mass and momentum in a certain continuum sense. This reads as the
following condition on the initial datafin:

0 ≤ f in ∈ L1 (Y, (1 + m + |p|) dy dp) . (1.7)

Existence of solutions under that condition has been proved in [7, 13, 24]. It has also been
proved that

f (t, ·) → 0 in L1(Y ), as t → +∞, (1.8)

that is that the total number of particles tends to 0. This is a first result on the long time
asymptotic behavior of the solutions but still very partial.

A more detailed description of the asymptotic behavior of the solutions may be ob-
tained by considering scaling properties of (1.1)–(1.4) and the corresponding self similar
solutions. Suppose for example that given a solution f (t,m,p) of (1.1)–(1.4), the function
fr(t,m,p) = r−λf (rt, r−μm, r−νp) is still a solution for any r > 0 and for some exponents
λ,μ, ν. A self similar solution is then a solution f such that f = fr for all r > 0. It is easy
to check that such a function must be of the form f (t,m,p) = tλf (1, tμm, tνp). These par-
ticular solutions may describe sometimes the long time asymptotic behavior of the solutions
of the equation for a suitable family of initial data. The existence of such self similar solu-
tions may still be a delicate problem, see for example [9, 12] and the references therein for
recent results in that direction for the Smoluchowski equation. We are very far from being
able to treat the general case, when the aggregation kernel a(y, y ′) actually depends on both
mass and momentum of the two colliding particles, or even in the case where the aggrega-
tion kernel a(y, y ′) only depends on the momentum of the two colliding particles. We may
then be less ambitious and try only to partially improve on the convergence result (1.8). We
may imagine to do so in several ways, listed below by order of accuracy. Let us just define
before the moment Mα(f ) of order ᾱ of a function f . It is done, depending on the model
considered, as follows:

• when f = f (y) with y = m ∈ Y = (0,∞) or y = p ∈ Y = R
d , then ᾱ = α ∈ R and

Mᾱ(f ) = Mα(f ) =
∫

Y

|y|αf dy; (1.9)

• when f = f (y) with y = (m,p) ∈ Y = (0,∞) × R
d , then ᾱ = (α,β) ∈ R

2 and

Mᾱ(f ) = Mα,β(f ) =
∫

Y

mα|p|βf dy. (1.10)

The answers may then be:
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• Answer 1. Upper bound on moment: ∃ᾱ, ∃ν,C ∈ (0,∞) such that

Mᾱ(f (t, .)) ≤ C

tν
∀t ≥ 1.

• Answer 2. Upper and lower bound on moments: ∃ᾱ, ∃νi = νi(ᾱ),Ci = Ci(ᾱ) ∈ (0,∞),
such that

C1

tν1
≤ Mᾱ(f (t, .)) ≤ C2

tν2
∀t ≥ 1.

• Answer 3. Existence of self-similar solution: there exists some profile function ϕ∞ : Y →
R+, some exponents λ,μ, ν ∈ R such that the function

ϕ(t,m,p) := tλϕ∞(tμm, tνp)

is a solution to (1.1), (1.3), (1.4).
• Answer 4. Self-similar behavior: for any given solution f there exists a self-similar solu-

tion ϕ such that f ∼ ϕ as t → ∞, in a sense to be specified.

Depending on the type of aggregation kernel a(y, y ′) that we consider, we are able to prove
one type of answer or another. The results obtained in this work, still very partial, may be
classified as follows.

In Sect. 2 we consider the case of the kernel aHS(y, y ′) (which depends on both mass
and momentum) and the only result that we are able to prove is an upper estimate on some
moments (that is a result of type “Answer 1”).

In the remainder of the paper, we focus our attention on easier cases where the aggre-
gation rate a only depends upon the momentum or the mass, namely a(y, y ′) = a(p,p′),
a(y, y ′) = a(m,m′) or even a(y, y ′) ≡ 1. In Sect. 3 we consider kernels a only depending
on the momentum p and p′. A similar case has been considered in [29]. After integration
of the particle density function f (t,m,p) with respect to m, the resulting equation may be
seen as describing a set of identical particles moving ballistically and such that when two
particles moving with velocities v1 and v2 collide they form an aggregate particle moving
with velocity v = v1 + v2. This simplified situation has been considered in [29]. We estab-
lish several moment estimates of type “Answer 2” when a(p,p′) = |p − p′|γ and deduce
that when γ = 2 (1.1), (1.3), (1.4) has no self-similar solutions of the form described above.
This may perhaps suggest also the non existence of self similar solutions in the case of the
mass and momentum hard spheres kernel.

Examples where a ≡ 1 or a ≡ a(m,m′) have already been treated in the literature as
simplified models (see for example [23] and [15] for a = a(m,m′) and [16] for a = 1).
When a = a(m,m′) it is possible to reduce the original equation (1.1), (1.3), (1.4) to the
classical Smoluchowski equation for the zero order moment of the density functions. That
type of aggregation rates is sometimes obtained assuming that the velocity v of the particles
is determined by their mass m. We treat in Sect. 4 the case where the kernel depends only
on the masses m and m′ of the colliding particles and we exhibit a new class of self-similar
solutions (that is an “Answer 3” type result). Finally, in Sect. 5 the case of constant kernel is
treated, for which results of type “Answer 3” and “Answer 4” are established.

The close relation between the ballistic aggregation of particles and Smoluchowski equa-
tion, in particular for the additive kernel, has been studied from a different point of view in
[1, 2] and references therein. In these works the author shows rigorously the precise relation
existing between the deterministic models of ballistic aggregation like sticky particles and
the random model of the so-called additive coalescent.
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We end this introduction by some remarks and open questions. A common feature of
these equations is that

M1,0(t) ≡ M1,0(0) and M0,0(t) → 0 as t → ∞,

and when the cross-section a is homogeneous of order γ̄ (which belongs to R or R
2) it is

likely that

Mγ̄ (t) ≡ 1

t
as t → ∞, (1.11)

a result which is also known to be true for the coagulation equation (see [9, 10, 12]) and for
the inelastic Boltzmann equation (see [20] and the references therein). The identity (1.11)
has been established when the aggregation rate depends only on the momentum or on the
mass. But only one side of such identity is proved in the case of the true hard spheres
aggregation rate, that depends both on the mass and the momentum of the particles. We ask
then.

Open question 1 Does the asymptotic identity behavior (1.11) holds true for some mass
and momentum depending aggregation rate? Numerical simulations indicate that this may
be the case in some of the problems treated in [28] where the authors consider a coagulation
kernel depending both on mass and momentum of degree γ̄ = 0. Strong numerical evidences
indicate that in dimension d = 2 and for a large reduced density of particles the zero order
moment M0(t) behaves like t−1.

Another interesting question should be to establish some asymptotic behavior of typical
velocity or momentum depending quantity. A way to express that in mathematical terms is
the following:

Open question 2 Is it possible to exhibit some moment Mᾱ for which we may determinate
the long time behavior of Mᾱ/M0 (even just saying that it converges as t → +∞)?

2 Mass and Momentum Dependence Case: a Remark on the Hard Spheres Model

We start recalling an existence result for initial data fin satisfying the symmetry property
fin(p) = fin(−p) for all p ∈ R

d . The functions satisfying that property will be called even
functions in all the remaining of this paper.

Theorem 2.1 (cf. [13, Theorem 2.6, Theorem 2.8 and Lemma 3.3]) Assume that the aggre-
gation rate a satisfies

0 ≤ a(y, y ′) = a(y ′, y) ≤ kS(y)kS(y
′) ∀y, y ′ ∈ Y,

a(m,−p,m′,−p′) = a(m,p,m′,p′) ∀(m,p), (m′,p′) ∈ Y,

a(m,p,m′,p′) ≤ a(m,p,m′,−p′) ∀(m,p), (m′,p′) ∈ Y s.t. 〈p,p′〉 > 0,

with kS(y) := 1 + m + |p| + |v|. Then, for every non negative and even (in the p variable)
initial condition fin ∈ L1(Y ; k2

S(y)dy), there exists a unique solution of (1.1)–(1.4) f ∈
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C([0, T );L1(Y ; kS(y)dy)) ∩ L∞(0, T ;L1(Y ; k2
S(y)dy)) ∀T > 0, satisfying furthermore:

∫
Y

f (t, .)m dy ≡ Cst, (2.1)

f (t, .) is even, so that
∫

Y

f (t, .)p dy ≡ 0, (2.2)

∫
Y

f (t, .)|v|k dy ≤
∫

Y

fin|v|k dy ∀k > 0, (2.3)

∫
Y

f (t, .)|p|2 dy ≤
∫

Y

fin|p|2 dy, (2.4)

∫
Y

f mα dy → 0 when t → ∞, ∀α < 1. (2.5)

Remark 2.2

(i) It is worth mentioning that the hard spheres collision rate aHS does satisfy the assump-
tion of Theorem 2.1, but not the Manev rate aNP .

(ii) As a consequence of (2.1), (2.3), (2.4) and (2.5) we deduce that

Mα,β(t) :=
∫

Y

f (t, y)mα|p|β dy → 0 as t → ∞ (2.6)

whenever (α,β) belongs to the region

{β ∈ [0,2], α < 1 − β/2} ∪ {β ≥ 2, α < 2 − β}.

In the case of the hard spheres model we are able to quantify the rate of decay of one of
the moment functions of the solution. More precisely, we have the following result.

Lemma 2.3 Assume that a = aHS and the assumption of Theorem 2.1 hold true. Then the
solution f of (1.1)–(1.4) is such that A−1 := M−1/3,1(0) < ∞ and

M−1/3,1(t) ≤ 1

A + t/4
∀t ≥ 0. (2.7)

Proof Notice first that M−1/3,1(0) < ∞ because

m−1/3|p| = m2/3|v| ≤ m4/3 + |v|2 ≤ 2k2
S.

Now, from the expression (1.1)–(1.2) of the collision kernel we have
∫

Y

Q(f,f )m−1/3|p| dy = 1

2

∫
Y

∫
Y


−1/3,1ff ′ dy dy ′,

with


−1/3,1 = [(m + m′)−1/3|p + p′| − m−1/3|p| − (m′)−1/3|p′|][r + r ′]2|v − v′|.
On one hand −
−1/3,1 ≥ 0 because

(m + m′)1/3

( |p|
m1/3

+ |p′|
(m′)1/3

)
≥ |p| + |p′| ≥ |p + p′|.
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On the other hand, if we only take into account the values of v and v′ where v · v′ < 0 and
suppose that, for example, |p| = min(|p|, |p′|) we have

−
−1/3,1 ≥
( |p|

m1/3
+

( |p′|
(m′)1/3

− |p′|
(m + m′)1/3

))
[r2 + (r ′)2][|v| + |v′|]

≥
( |p|

m1/3

)
[(r ′)2][|v′|] = |p|

m1/3

|p′|
(m′)1/3

.

Whence, using that f is even:

d

dt

∫
Y

f
|p|
m1/3

dy ≤ −1

2

∫
Y 2,v·v′<0

|p|
m1/3

|p′|
(m′)1/3

ff ′ dy dy ′

≤ −1

4

(∫
Y

f
|p|
m1/3

dy

)2

,

from which (2.7) straightforwardly follows. �

Remark 2.4 As it has already been noticed (cf. for example [4, 5, 27]), if the aggregation
rate is of the form a(y, y ′) = A(m,m′)B(v, v′) (as in aHS or aNP ) and we assume that
f (t,m,p) is a solution of (1.1), (1.3), (1.4) of the form F(t,m)ϕ(pm−θ ) for some function
ϕ such that

∫
ϕ(p)dp = 1 and θ ∈ R, then F(t,m) satisfies a Smoluchowski equation with a

coagulation rate given by A(m,m′)C(m,m′) with C depending on the function ϕ and on B:

∂F

∂t
(t,m) = 1

2

∫ m

0
F(t,m − m′)F (t,m′)A(m − m′,m′)C(m − m′,m′) dm′

−
∫ ∞

0
F(t,m)F (t,m′)A(m,m′)C(m,m′) dm′, (2.8)

C(m,m′) = m−6θ

∫
R3

∫
R3

ϕ
( p

mθ

)
ϕ

(
p′

m′θ

)
B

(
p

m
,
p′

m′

)
dp dp′. (2.9)

Conversely, consider any ϕ for which the kernel C(m,m′) is well defined, and F a so-
lution of the Smoluchowski equation (2.8) with coagulation rate A(m,m′)C(m,m′), where
C(m,m′) is given by (2.9). Then, the function f (t,m,p) = ϕ(mp−θ )F (t,m) satisfies a kind
of averaged (in v) version of (1.1), (1.3), (1.4), namely:

∂t

∫
R3

f (t,m,p) dp =
∫

R3
(Q1(f ) − Q2(f ))(t,m,p) dp. (2.10)

Of course all the available results on coagulation equation may be applied to (2.8). But the
function f does not satisfies (1.1), (1.3), (1.4) unless B ≡ 1 since it is not possible to find
any function ϕ such that:

m−3θ

∫
R3

ϕ

(
p′′

mθ

)
B

(
p′′

m
,
p′

m′

)
dp′′ = B

(
p

m
,
p′

m′

)
.

Notice that, since no uniqueness result of the solutions to the Cauchy problem for (2.10)
is known, we cannot even know if the function F(t,m) solving (2.8), (2.9) coincides with
the “v-average” of the solution f (t,m,p) of (1.1), (1.3), (1.4). The case B ≡ 1 is treated in
Sect. 4.
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3 The Momentum Dependence Case a = a(p,p′)

We consider now (1.1), (1.3), (1.4) with a collision kernel a independent of the mass of the
colliding particles. We may then integrate the equation with respect to the mass and obtain
that the function of t and p,

∫ ∞
0 f (t,m,p) dm, that we shall still denote f , satisfies the

equation:

∂tf = Q(f,f ) in (0,+∞) × R
d , (3.1)

f (0) = fin in R
d , (3.2)

the collision operator Q(f ) is given by Q(f,f ) = Q1(f,f ) − Q2(f,f ), where

Q1(f,f )(y) = 1

2

∫
Rd

a(p′,p − p′)f (p′)f (p − p′) dp′, (3.3)

Q2(f,f )(p) =
∫

Rd

a(p,p′)f (p)f (p′) dp′. (3.4)

We focus on the cases

a(p,p′) = |p − p′|γ , γ ∈ [0,2], d ∈ N
∗. (3.5)

Before stating our main result we need some definitions and notations. We say that a
function f on R

d is radially symmetric if

f (Rp) = f (p) ∀p ∈ R
d , R ∈ SO(d)

where SO(d) stands for the group of rotations on R
d . For any weight function k : R

d → R+
we define the “moment of order k” of the non negative density measuref ∈ M1

loc(R
d) by

Mk(f ) :=
∫

Rd

k(p)f (dp),

and we define M1
k as the set of Radon measures μ such that Mk(|μ|) < ∞. For any α ∈ R+

we use the shorthand notation

Mα :=
∫

R

f (p)|p|α dp,

that is Mα = Mk(f ) for k(p) = |p|α and the shorthand notation M1
α = M1

� for �(p) = 1 +
|p|α .

Theorem 3.1 Consider the aggregation rate (3.5).

(i) For any even initial datum fin ∈ M1
2α , α ∈ N\{0,1}, there exists a unique even solution

f ∈ C([0, T );M1(Rd)−weak)∩L∞(0, T ;M1
2α(R

d)) to (3.1)–(3.4). For any α ∈ [0,1]
the function t �→ Mα(t) is decreasing and f (t, .) is radially symmetric for any t ≥ 0 if
furthermore fin is radially symmetric.

(ii) Moreover, the solution f (t, .) satisfies

1

Mγ (0)−1 + k1t
≤ Mγ (t) ≤ 1

Mγ (0)−1 + k2t
∀t ≥ 0, (3.6)

for some constants ki = ki(γ, d) ∈ (0,∞).



430 M. Escobedo, S. Mischler

One of the main tools in order to establish that result is to consider the equations satisfied
by the moments of the solution f . Using the classical argument for the coagulation equation,
and one more change of variable p′ → −p′, it is easy to check that any even solution f to
(3.1)–(3.4) satisfies (at least formally) the fundamental moment equation

d

dt
Mα = 1

2

∫
Rd

∫
Rd

ff ′a(p,p′)[|p + p′|α − |p|α − |p′|α] dp dp′

= 1

4

∫
Rd

∫
Rd

ff ′{a(p,p′)[|p + p′|α − |p|α − |p′|α]

+ a(p,−p′)[|p − p′|α − |p|α − |p′|α]} dp dp′. (3.7)

We consider in this section the case γ ∈ (0,2) and d ∈ N
∗, the case γ = 1 and d = 1 and

the case γ = 2 and d ∈ N
∗. The case γ = 0 and d = 1 is treated in Sect. 5.

3.1 Proof of the Existence and Uniqueness Part in Theorem 3.1

We prove in this subsection a uniqueness and existence result for a general class of aggre-
gation rates by adapting some arguments from [13, 17], see also [22]. We then deduce the
existence and uniqueness part in Theorem 3.1.

Lemma 3.2 Consider a continuous aggregation rate a : R
2d → R+ which satisfies

a(−p,−p′) = a(p,p′) ∀p,p′ ∈ R
d , (3.8)

a(p,p′) ≤ a(−p,p′) ∀p,p′ ∈ R
d , p · p′ > 0, (3.9)

and an even weight function k : R
d → R+. We define


k(p,p′) := a(p,p′)[k(p′′) + k(p′) − k(p)],

̃k(p,p′) = 
k(p,p′) + 
k(−p,p′).

and assume that

a(p,p′) ≤ Ck(p)k(p′) and 
̃k(p,p′) ≤ Ck(p)k(p′)2. (3.10)

Then, for any given even initial data fin ∈ M1
k (Rd) there exists at most one even solution

f ∈ C([0, T );M1
k (Rd)) ∩ L∞(0, T ;M1

k2(R
d)) to (3.1)–(3.4).

Remark 3.3

(i) The same result holds without the assumption that the initial density function fin is even
when the second condition in (3.10) is replaced by


k(p,p′) ≤ Ck(p)k(p′)2.

The same kind of results was obtained in [13, 17] in the L1 framework. The same result
also holds for radially symmetric solutions when we assume that

a(Rp,Rp′) = a(p,p′) ∀p,p′ ∈ R
d , R ∈ SO(d), (3.11)
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and the second condition in (3.10) is replaced by

∫
R∈SO(d)


(p,Rp′) dR ≤ Ck(p)k(p′)2.

(ii) The same kind of result holds for aggregation rate defined on Y 2 with Y = (0,∞) × R
d

as it is the case when particles are identified by their mass and momentum, see [13].

Proof of Lemma 3.2 Step 1. We claim that for any gin ∈ M1
k there is a unique g ∈

C([0, T );M1
k − weak), G ∈ L1(0, T ;M1

k ) and b ∈ C((0, T ) × R
d;R+) such that

∂tg = G − bg in the sense of D′([0, T ) × R
d),

g(0) = gin in M1
k .

and that, the differential inequality

d

dt
‖gk‖M1 ≤ ‖Gk‖M1 − ‖bgk‖M1 (3.12)

holds in the sense of D′([0, T )). First, it is clear using a classical duality argument that (3.12)
has at most one solution. Suppose indeed, g1, g2 ∈ C([0, T );M1

k −weak) are two such solu-
tions. For any t ∈ (0, T ), and any ϕ ∈ C0(R

d) the function ϕ(t,p) = ϕ(p) exp
∫ t

t
b(s,p) ds

satisfies ϕ(t, ·) ∈ C0(R
d) for all t > 0, solves the dual homogeneous equation ∂tϕ = bϕ

in R × R
d and ϕ(t) = ϕ. Let finally be ψn ∈ C0([0, T )) such that ψn(t) = 1 on t ∈ [0, t],

ψn(s) → 1[0,t](s) for all s ∈ [0, T ) and ψ ′
n → −δt as n → +∞. Then, on the one hand:

(∂t (g1 − g2), ϕψn) = −
∫ T

0

∫
Rd

(ψnϕ)t d(g2(s) − g1(s))(p) ds

= −
∫ T

0

∫
Rd

ϕtψn d(g2(s) − g1(s))(p) ds

−
∫ T

0

∫
Rd

ψntϕ d(g2(s) − g1(s))(p) ds

= −
∫ T

0

∫
Rd

bϕψn d(g2(s) − g1(s))(p) ds

−
∫ T

0

∫
Rd

ψntϕ d(g2(s) − g1(s))(p) ds.

And on the other hand,

(∂t (g1 − g2), ϕψn) = − (b(g1 − g2), ϕψn)

= −
∫ T

0

∫
Rd

bϕψn d(g2(s) − g1(s))(p).

We deduce that, for all n ≥ 1:

∫ T

0

∫
Rd

ψntϕ d(g2(s) − g1(s))(p) ds = 0
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and passing to the limit n → +∞, using that gi ∈ C([0, T ),M1
k − weak):

∫
Rd

ϕ d(g2(t) − g1(t))(p) = 0.

In order to show the existence of a solution g ∈ C([0, T );M1
k − weak) of (3.12) we notice

first that, for any gε(0) ∈ CKε := {u ∈ C(Rd); suppu ⊂ Kε}, with Kε ⊂ R
d a compact, and

any Gε ∈ L1(0, T ;CKε ) there exists a (unique) solution gε ∈ C([0, T );CKε ) to (3.12) which
furthermore satisfies

d

dt

∫
Rd

|gε|k dy =
∫

Rd

(Gε − bgε)signgεk dy

≤
∫

Rd

|Gε|k dy −
∫

Rd

|gε|bk dy. (3.13)

Here, signgε = 1 if gε > 0, signgε = 0 if gε = 0, signgε = −1 if gε < 0. Finally, we can
build (by a standard truncation and regularization by convolution process) the sequences
(Gε) and gε(0) such that furthermore Gε ⇀ G, gε(0) ⇀ g(0) in the weak sense of measures
in M1

k , ‖Gε(s)‖M1
k
≤ ‖G(s)‖M1

k
for a.e. s ∈ (0, T ), ‖gε(0)‖M1

k
≤ ‖g(0)‖M1

k
. By the previous

uniqueness argument we have gε ⇀ g in the weak sense of measure and we get (3.12) by
passing to the limit in (3.13). This ends the proof of Step 1.

Step 2: End of the proof of Lemma 3.2.
Consider two even solutions f1, f2 ∈ C([0, T );M1

k (Rd)) ∩ L∞(0, T ;M1
k2(R

d)) and let us
denote D = f2 − f1, S = f1 + f2. By a standard algebraic computation D satisfies the
following equation

∂tD = Q̂(f2, f2) − Q̂(f1, f1) = Q̂(D,S)

= Q̂1(D,S) − SL(D) − L(S)D,

where

Q̂i(ϕ,ψ) = 1

2
(Qi(ϕ,ψ) − Qi(ψ,ϕ)), L(ϕ) :=

∫
Rd

a(p,p′)ϕ(p′) dp′.

Because of the assumption made on a and f we have D ∈ C([0, T ];M1
k − weak), G :=

Q̂1(D,S) − SL(D) ∈ L∞(0, T ;M1
k ) and 0 ≤ b := L(S) ∈ C([0, T ] × R

d) so that the first
step implies

d

dt
‖D‖M1

k
≤ ‖(Q̂1(D,S) − SL(D))k‖M1

k
− ‖DkL(S)‖M1

k

≤ 1

2

∫ ∫
a[k′′ + k′]|D(dp)|S(dp′) − 1

2

∫ ∫
ak|D(dp)|S(dp′)

≤ 1

4

∫ ∫
Ã|D(dp)|S(dp′) ≤ C

4
‖S‖M1

k2
‖D‖M1

k
.

Uniqueness follows by using the Gronwall lemma. �

Lemma 3.4 Consider a continuous aggregation rate a : R
2d → R+ which satisfies (3.8)

(resp. (3.11)), (3.9) and such that, for some positive constant C:

a(p,p′) ≤ C(k(p) + k(p′)) ∀p,p′ ∈ R
d , (3.14)
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for the weight function k(p) = 1 + |p|2. Then, for any given even (resp. radially symmetric)
initial datum fin ∈ M1

2α(R
d) there exists at least one even (resp. radially symmetric) solu-

tion f ∈ C([0, T );M1(Rd)−weak)∩L∞(0, T ;M1
2α(R

d)) to (3.1)–(3.4). This solution also
satisfies that the map t �→ Mβ(t) is decreasing for any β ∈ [0,1].

Remark 3.5 It is likely that by adapting some arguments introduced in [21], see also [8,
17], for any even (resp. radially symmetric) initial datum fin ∈ L1

2α(R
d) the approximating

solution fn(t, .) built in the proof below is a Cauchy sequence in C([0, T ;L1(Rd)) so that
we may conclude f ∈ C([0, T );L1(Rd)) ∩ L∞(0, T ;L1

2α(R
d)).

Proof of Lemma 3.4 We define the sequence of bounded aggregation rates an := a ∧ n, for
which classically fixed point argument (see for instance [13] which deals with some similar
situation) implies the existence of a unique even (resp. radially symmetric) solution fn ∈
C([0, T );L1

2α(R
d)) to (3.1)–(3.4) associated with an for any initial datum fin,n ∈ L1

2α+2(R
d),

α ∈ N, α ≥ 2. Then, we have for any β ∈ N
∗, β ≤ α

d

dt

∫
fn(1 + |p|2β)

= 1

2

∫
fnf

′
nan

[
(|p|2 + 2p · p′ + |p′|2)β − |p|2β − |p′|2β − 1

]

=
∫

fnf
′
nan

[
2βp · p′|p|2(β−1) − 1/2

]

+
∑

μβ1,β2,β2

∫
fnf

′
nan(p · p′)β1 |p|2β2 |p|2β3 ,

where in the last sum the integers β1, β2, β3 are such that β1 + β2 + β3 = β and must
satisfy also: either β1 ≥ 2, or β2 ≥ 1 and β3 ≥ 1. This implies: |p · p′|β1 |p|2β2 |p|2β3 ≤
|p|2β ′ |p′|2(β−β ′) with 1 ≤ β ′ ≤ β − 1. Since we also have

∫
fnf

′
nanp · p′|p|2(β−1)

=
∫

p·p′>0
fnf

′
n(a(p,p′) ∧ n − a(−p,p′) ∧ n)p · p′|p|2(β−1) ≤ 0,

we conclude with

d

dt

∫
fn(1 + |p|2β) ≤

∑
1≤β ′≤β−1

μβ ′
∫

fnf
′
na|p|2β ′ |p′|2(β−β ′). (3.15)

When β = 1 the set of admissible values of β ′ is empty, and we recover a result from [9]

d

dt

∫
fn(1 + |p|2) ≤ 0,

so that

sup
[0,T ]

‖fn‖L1
k
≤ ‖fin,n‖L1

k
. (3.16)
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When β ≥ 2, gathering (3.14), (3.15) and (3.16), we easily conclude by a iterative argument
that

sup
[0,T ]

‖fn‖L1
kβ

≤ CT (β,‖fin,n‖L1
kβ

). (3.17)

Considering a sequence (fin,n) such that fin,n ⇀ fin in the weak sense of measure and
‖fin,n‖L1

kβ
remains bounded, we easily pass to the limit in the equation satisfied by fn thanks

to (3.17). The fact that t �→ Mβ(t) is decreasing follows from the fact that p �→ |p|β is a sub-
additive function when β ∈ [0,1], so that 
β ≤ 0 and then d/dtMβ(t) ≤ 0. �

Proof of the existence and uniqueness part in Theorem 3.1 It is clear that a(p,p′) =
|p − p′|γ satisfies (3.8), (3.9), the first inequality in (3.10) and (3.14). Moreover, the second
inequality in (3.10) holds since we have


̃2(p,p′) = |p − p′|γ (|p + p′|2 + |p′|2 − |p|2 + 1)

+ |p + p′|γ (|p − p′|2 + |p′|2 − |p|2 + 1)

= 2(|p − p′|γ − |p + p′|γ )p · p′

+ (|p − p′|γ + |p + p′|γ )(2|p′|2 + 1),

where the first term in non-positive and the second term is bounded by say 8(k′)2k, using
that |p ± p′|γ ≤ 2(|p|γ + |p′|γ ). We conclude by using Lemma 3.2 and Lemma 3.4. �

3.2 Proof of the Rate Decay Part in Theorem 3.1 when γ < 2

For an even initial datum fin ∈ M1
4 (Rd) we consider the unique even solution f ∈

C([0, T );M1 − weak) ∩ L∞(0, T ;M1
4 ), ∀T , given by Theorem 3.1(i). It satisfies the mo-

ment equation

d

dt
Mγ = 1

2

∫
Rd

∫
Rd

ff ′
γ dp dp′ = 1

4

∫
Rd

∫
Rd

ff ′
̃γ dp dp′, (3.18)

with

−
γ (p,p′) = |p − p′|γ [|p + p′|γ − |p|γ − |p′|γ ]

and

−
̃γ (p,p′) = |p − p′|γ [|p + p′|γ − |p|γ − |p′|γ ]
+ |p + p′|γ [|p − p′|γ − |p|γ − |p′|γ ]

. (3.19)

We split the proof of Theorem 3.1(ii) in several steps.

Step 1. One the one hand, for any given A > 0 and any p,p′ ∈ R
d such that A−1|p′| ≤

|p| ≤ A|p| we easily get

|
γ (p,p′)| ≤ (|p| + |p′|)γ max
[
(|p| + |p′|)γ , |p|γ + |p′|γ ]

≤ 24 max(|p|, |p′|)2γ ≤ 24Aγ (|p||p′|)γ . (3.20)
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On the other hand, we define M := max(|p|, |p′|), m := min(|p|, |p′|), x := m/M ∈ [0,1],
ε := p̂ · p̂′ ∈ [−1,1] and we compute (in the first line we have assumed that |p| = M which
is not a restriction to the generality because of the symmetry of 
̃γ )

−
̃γ (p,p′) = M2γ {|p̂ − xp̂′|γ [1 + xγ − |p̂ + xp̂′|γ ]
+ |p̂ + xp̂′|γ [1 + xγ − |p̂ − xp̂′|γ ]}

= M2γ {(1 + xγ )[(1 + 2εx + x2)γ/2 + (1 − 2εx + x2)γ/2]
− 2(1 + 2εx + x2)γ/2(1 − 2εx + x2)γ/2}

= M2γ {2xγ + O(x2)} ≤ 3M2γ xγ = 3(|p||p′|)γ (3.21)

uniformly on ε ∈ [−1,1] and x ≤ A−1
0 for A0 ≥ 1 large enough.

Using (3.20) and (3.21) we obtain

1

4

̃γ (p,p′) ≥ −k1|p|γ |p′|γ ∀p,p′ ∈ R

d ,

with k1 := max(3/4,23A
γ

0 )/4, and (3.18) then implies

d

dt
Mγ ≥ −k1M

2
γ .

The first inequality in (3.6) follows straightforwardly by integrating this differential equa-
tion.

Step 2. We still use the variables M , x, ε introduced in Step 1. We also define r > 0 and
u ∈ [0,1] by setting r2 := |p|2 + |p′|2 and u := 2p · p′/r2, so that |p ± p′|2 = r2(1 ± u).
Splitting the positive and the negative terms in identity (3.19), we have

−
̃γ (p,p′) = (|p|γ + |p′|γ )(|p − p′|γ + |p + p′|γ ) − 2|p − p′|γ |p + p′|γ

= r2γ

{
(|p|2)γ/2 + (|p′|2)γ/2

(|p|2 + |p′|2)γ/2

[
(1 + u)γ/2 + (1 − u)γ/2

]

− 2(1 + u)γ/2(1 − u)γ/2

}
.

Since γ /2 ∈ [0,1], the map x �→ xγ/2 is sub-additive, and we obtain

−
̃γ (p,p′) ≥ r2γ
{[

(1 + u)γ/2 + (1 − u)γ/2
] − 2(1 + u)γ/2(1 − u)γ/2

}
≥ M2γ (1 + u)γ/2(1 − u)γ/2φ(u),

φ(u) := [
(1 − u)−γ /2 + (1 + u)−γ /2

] − 2.

We easily verify that φ is increasing on [0,1] so that φ(u) > φ(0) = 0 for any u ∈ [−1,1],
u �= 0. Coming back to the variables M , x and ε, that is φ(u) > 0 for any p,p′ ∈ R

d such
that the associated variables M , x and ε satisfy M > 0, x > 0 and ε �= 0. Moreover, when
ε = 0 (p and p′ are orthogonal vectors) we also have

−
̃γ (p,p′) = 2(|p|2 + |p′|2)γ/2
[|p|γ + |p′|γ − (|p|2 + |p′|2)γ/2

]
≥ 2M2γ

[
1 + xγ − (1 + x2)γ/2

]
> 0
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for any p,p′ ∈ R
d such that the associated variables M and x satisfy M > 0, x > 0, because

the function z �→ zγ/2 is strictly sub-additive on R+, that is (z + z′)γ/2 < zγ/2 + (z′)γ/2 for
any z, z′ > 0. From these two lower bounds on −
̃γ , we obtain

−
̃γ (p,p′) ≥ M2γ ψ(x, ε) (3.22)

with ψ(x, ε) > 0 for any x > 0 and ε ∈ [−1,1].
Next, coming back to (3.21), we also deduce

−
̃γ (p,p′) = M2γ
{
2xγ + O(x2)

} ≥ M2γ xγ (3.23)

uniformly on ε ∈ [−1,1] and x ≤ A−1
0 for A0 ≥ 1 large enough. We deduce from (3.22) and

(3.23) that for some constant k2 > 0 we have

∀p,p′ ∈ R
d −1

4

̃γ ≥ k2M

2γ xγ = k2(|p||p′|)γ ,

and (3.18) then implies

d

dt
Mγ ≤ −k2M

2
γ .

The second inequality in (3.6) is again obtained by integrating this differential equation.

3.3 The Case a(y, y ′) = |p − p′|, d = 1

In the particular case d = 1 and γ = 1, it is possible to estimate more precisely the decay
rate of the first moment M1. It is also possible to estimate the decay rates of several other
moments.

Lemma 3.6 Assume a(y, y ′) = |p − p′| and d = 1. For any even initial data fin ∈ M1
3 (R)

the unique solution f ∈ C([0, T ];M1(R)) ∩ L∞(0, T ;M1
3 (R)) of (3.1)–(3.4) given by The-

orem 3.1 satisfies for any t ≥ 0

max

(
M0(0)

(1 + M1(0)t/2)2
,

23/2M0(0)

(2 + 3M
1/3
3 (0)t)3/2

)

≤ M0(t) ≤ M0(0)

(1 + M1(0)t)1/2
, (3.24)

1

M1(0)−1 + t
≤ M1(t) ≤ 1

M1(0)−1 + t/2
, (3.25)

M2(0)

(1 + M1(0)t/2)2
≤ M2(t) ≤ M2(0), (3.26)

M3(0)

(1 + M1(0)t/2)2
≤ M3(t) ≤ M3(0). (3.27)

Remark 3.7 The estimate (3.25) on M1(t) gives the exact value of the power of t at which
the first moment decays for t large. That is not the case for the estimates on Mα , α = 0,2,3
which are actually rather partial. They do not even allow to obtain the limit of any of the
quotients of moments Mα(t)/M1(t) for α = 0,2,3 as t → ∞. The value of such limits
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would indicate whether the solution f (t) has a tendency to concentrate or to spread as t

increases (see also below the discussion concerning the case γ = 2).

Remark 3.8 The approximation of the relative velocity |v − v′| in the collision kernel
a(y, y ′) by the root mean squared velocity V (t) has been sometimes considered. The au-
thors of [29] have treated such an approximation in the simplified equation where the colli-
sion kernel a(y, y ′) is exactly a = |v −v′|. They have proved that the corresponding particle
density decays like t−2, that is exactly the power predicted by the mean-field no-correlation
approach. A different approximation, called “very hard potential” has also been considered
by these authors. In particular they remark that the numerical value obtained for the decay
rate of the particle density in the simplified model is between the two values predicted by
the mean-field no-correlation approach in the hard and very hard potential approximation.

Inspired by this one could be tempted to approximate in (3.1)–(3.5) with γ = 1 the col-
lision kernel |p − p′| by the root mean squared momentum P (t)

√
m2(t) where m2 denotes

the second moment of the solution of that modified equation. We easily compute:

m2(t) ≡
(

m2(0)1/2 + m2
1t

2

)2

and m0(t) = 1

1
m0(0)

+ m
1/2
2 (0)t

2 + m2
1t2

8

.

It is worth emphasizing that M0(t) (the number of particles at time t for the equation with
rate a(p,p′) = |p − p′|) and m0(t) (the number of particles at time t for the equation with
rate a(p,p′) = P (t)) have definitely not the same long time behavior. As a conclusion, such
an approximation is not a good one here.

Proof of Lemma 3.6 Let us denote M = max(|p|, |p′|) and m = min(|p|, |p′|). We system-
atically exploit the differential equation

d

dt
Mα = 1

4

∫
R

∫
R

ff ′
α dp dp′ (3.28)

with


α := [M − m][(M + m)α − Mα − mα] + [M + m][(M − m)α − Mα − mα].

Step 1: We suppose α = 1. In that case


1 = −2(M + m)m,

from where we deduce

d

dt
M1(t) = −M2

1 (t)

2
− B1(t)

2
,

B1(t) :=
∫

R

∫
R

ff ′{min(|p|, |p′|)}2 dp dp′.

Since 0 ≤ {min(|p|, |p′|)}2 ≤ |p||p′|, we have 0 ≤ B1(t) ≤ M2
1 (t) and therefore

−M2
1 (t) ≤ d

dt
M1(t) ≤ −M2

1 (t)

2
, (3.29)

from where (3.25) follows.
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Step 2: We suppose α = 0. Then, since


0 = −2M,

we have

d

dt
M0(t) = −B0(t)

2
, B0(t) :=

∫
R

∫
R

ff ′ max(|p|, |p′|) dp dp′. (3.30)

Using |p| ≤ max(|p|, |p′|) ≤ |p| + |p′|, we deduce M0M1 ≤ B0 ≤ 2M0M1 and then

−M0M1 ≤ d

dt
M0 ≤ −1

2
M0M1. (3.31)

By the previous estimate (3.25) on M1(t) we get

− M0(t)

M−1
1 (0) + t/2

≤ d

dt
M0(t) ≤ − M0(t)

2(M−1
1 (0) + t)

,

and we obtain the first lower estimate as well as the upper bound in (3.24).

Step 3: The case α = 2. We deduce from


2 = −4mM2

that:

d

dt
M2(t) = −B2(t), B2(t) :=

∫
R

∫
R

ff ′ min(|p|, |p′|)|p||p′| dp dp′.

Using that 0 ≤ min(|p|, |p′|)|p||p′| ≤ |p|2|p′| together with (3.25), we obtain

−M2
1

M1(0)−1 + t/2
≤ −M2M1 ≤ d

dt
M2(t) ≤ 0,

and (3.26) follows.

Step 4: The case α = 3. From the following estimates on 
3

0 ≥ 
3 = −2Mm3 − 2m4 ≥ −4Mm3 ≥ −4|p|3|p′|,
we deduce

0 ≥ d

dt
M3(t) ≥ −M1M3,

which again implies (3.27).

Step 5: Suppose α = 0 again. We complete now the lower estimate of M0 in (3.24). To this
end we write for any ε > 0

d

dt
M0 = −1

2

∫
R

∫
R

ff ′|p′ − p| dp dp′

≥ −1

4

∫
R

∫
R

ff ′
(

ε + 1

ε
|p − p′|2

)
dp dp′

≥ −ε

4
M2

0 − 2

ε
M0M2.
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By interpolation we have M2(t) ≤ M
1/3
0 (t)M

2/3
3 (t). Since, by (3.27), M3(t) ≤ M3(0) for all

t > 0 we deduce M2(t) ≤ M
1/3
0 (t)M

2/3
3 (0). Therefore

d

dt
M0(t) ≥ −ε

4
M2

0 − 2

ε
M

4/3
0 M

2/3
3 (0).

We now chose ε ≡ ε(t) > 0 such that εM2
0 = 1

ε
M

4/3
0 M

2/3
3 (0), or equivalently ε =

M
−1/3
0 M

1/3
3 (0). With that choice of ε(t) the equation reads

d

dt
M0(t) ≥ −9

4
M

1/3
3 (0)M

5/3
0 ,

and the second lower estimate in (3.24) follows. �

Remark 3.9 In the last step, we may also argue as follows. Combining the estimate
max(|p|, |p′|) ≥ (|p||p′|)1/2, (3.27), the differential equation (3.30) and the interpolation
estimate M

5/2
1 ≤ M2

1/2M
1/2
3 we obtain:

d

dt
M0 ≤ − 1

dt
M

1/2
3 (0)M

5/2
1 (t).

Using (3.25) we recover the second lower estimate in (3.24).

3.4 The Case a = |p − p′|2

When γ = 2 and d ∈ N
∗, the family of moment equations may be closed, for all the “even”

moments M2α , α ∈ N. This allows to prove a non-existence result of self similar solutions
in that case. We first obtain in the next lemma the exact expressions of the even moments of
order less that or equal to four of the solutions to (3.1)–(3.4).

Lemma 3.10 Assume a(y, y ′) = |p−p′|2and d ∈ N
∗. Then, there exist numerical constants

kd ∈ (0,∞), k1 := 2, such that for any radially symmetric initial datum fin ∈ M1
6 (Rd) the

unique radially symmetric solution f ∈ C([0, T ];M1(Rd)) ∩ L∞(0, T ;M1
6 (Rd)) of (3.1)–

(3.4) given by Theorem 3.1 satisfies for any t ≥ 0

M0(t) = M0(0)

(M2(0)−1 + 2kd t)1/(2kd )
, (3.32)

M2(t) = 1

M2(0)−1 + 2kd t
, (3.33)

M4(t) = M4(0)(M2(0)−1 + 2kd t)
1
kd

−2
. (3.34)

Proof of Lemma 3.10 We proceed in several steps.

Step 1: If α = 2. Using the fact that f is radially symmetric (so that the odd moments of
f vanish) and the notations p = rσ , r = |p|, p′ = r ′σ ′, r ′ = |p′|, the fundamental moment
identity (3.7) implies
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d

dt
M2 = 1

2

∫
Rd

∫
Rd

ff ′[|p|2 − 2p · p′ + |p′|2](2p · p′) dp dp′

= −2
∫

Rd

∫
Rd

ff ′[p · p′]2 dp dp′

= −2
∫ ∞

0

∫ ∞

0
f (r)f (r ′)rd+1(r ′)d+1 dr dr ′

×
∫

Sd−1

∫
Sd−1

[σ · σ ′]2 dσ dσ ′

= −2kdM
2
2 ,

with

kd := ω−2
d

(∫
Sd−1

∫
Sd−1

[σ · σ ′]2 dσ dσ ′
)

= ω−1
d

∫
Sd−1

σ 2
1 dσ.

We compute k1 = 1, k2 = 1/2. The expression (3.33) immediately follows by integrating
that ODE.

Step 2: If α = 0. In that case the fundamental moment identity (3.7) and the fact that f is
radially symmetric imply

d

dt
M0 = 1

2

∫
Rd

∫
Rd

ff ′[|p|2 − 2p · p′ + |p′|2](−1) dp dp′

= −M2M0.

Integrating that ODE with the help of (3.33) we get (3.32).

Step 3: If α = 4. When α = 4, the fundamental moment identity (3.7) and the fact that f is
radially symmetric imply

d

dt
M4 = 1

2

∫
Rd

∫
Rd

ff ′[|p|2 − 2p · p′ + |p′|2]

× [4(p · p′)2 + 8|p|2(p · p′) + 2|p|2|p′|2] dp dp′

= 1

2

∫
Rd

∫
Rd

ff ′ {[2|p|2][4(p · p′)2 + 2|p|2|p′|2] − 16|p|2(p · p′)2
}

dp dp′

= 2
∫

Rd

∫
Rd

ff ′ {|p|4|p′|2 − 2|p|2(p · p′)2
}

dp dp′

= (2 − 4kd)M2M4.

Integrating that ODE with the help of (3.33) we get (3.34). �

Remark 3.11 It is straightforward to check that if �(t,m,p) solves (1.1), (1.3), (1.4) with
a(y, y ′) ≡ |p − p′|γ , so does

�ρ(t,m,p) = ρ−λf (ρt, ρ−δm,ρ−νp) (3.35)



Scalings for a Ballistic Aggregation Equation 441

for all ρ > 0, whenever the exponents satisfy:

λ = ν(γ + 1) + δ − 1. (3.36)

This may suggest the existence of self similar solutions of (1.1), (1.3), (1.4) with a(y, y ′) ≡
|p − p′|γ of the form :

�(t,m,p) = tλ�
(
t δm, tνp

)
(3.37)

for some function �. Therefore the function

g(t,p) =
∫

Rd

tλ�
(
t δm, tνp

)
dm = tλ−δ

∫
Rd

� (m, tνp)dm

=: tμG(tνp) (3.38)

with μ = λ−δ = ν(γ +1)−1 would be a self similar solution of (3.1)–(3.5) and its moments
of order α ∈ R, would then be:

Mα(g(t, .)) = Mα(G)tμ−(d+α)ν . (3.39)

On the other hand, by Lemma 3.10, when γ = 2 the solutions f of (3.1)–(3.4) with initial
data fin ∈ M1

6 (R) satisfy

M0(f (t, .)) ∼ C ′
0t

− 1
2kd , M2(f (t, .)) ∼ C ′

2t
−1, M4(f (t, .)) ∼ C ′

4t
1
kd

−2
. (3.40)

as t → +∞ for some positive constants C ′
0, C ′

2 and C ′
4. It is easy to check that to have both

(3.39) and (3.40) requires :

(3 − d)ν − 1 = − 1

kd

; (1 − d)ν − 1 = −1; −(1 + d)ν − 1 = 1

kd

− 2

that is impossible. We deduce that when γ = 2, (3.1)–(3.5) has no self similar solution of the
form (3.38) with self-similar profile G ∈ M1

6 (R). Therefore (1.1), (1.3), (1.4) with a(y, y ′) ≡
|p − p′|2 has no self similar solution of the form (3.37) with � such that M1,0(�) < ∞ and
M0,6(�) < ∞.

Notice that in order for the function �(q) to satisfy the last condition M0,6(�) < ∞ it
must, in particular, decay fast enough to zero as |q| → ∞. Therefore, Lemma 3.10 does not
exclude the existence of self similar solutions of the form (3.38) with “fat tailed” self-similar
profiles � such that M0,k(�) = ∞ for k ≥ 6.

Remark 3.12 Consider again any solution f of (3.1)–(3.4) with initial data fin ∈ M1
6 and

suppose, only for the sake of simplicity, that we are in the case d = 1. Then the moments
Mγ (f (t)) for 0 ≤ γ ≤ 2α satisfy:

d

dt
M2α =

α−1∑
β=1

(
2α

2β

)
M2βM2(α+1−β) −

α−1∑
β=0

(
2α

2β + 1

)
M2β+2M2(α−β).

In particular:

d

dt
M6 = 3M2M6 − 5M2

4 .
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When M2(0) = 1/2 (only for the sake of simplicity again), the solution is

M6(t) =
(

M6(0) − 2M4(0)2 + 2M4(0)2

(1 + t)5/4

)
(1 + t)3/2 ∀t ≥ 0,

with, by Holder’s inequality, M6(0) − 2M4(0)2 > 0. It then follows that the moments of f

satisfy the following

M0(t) ∼ κ0t
−1/2,

M2(t)

M0(t)
∼ κ1t

−1/2,
M6(t)

M0(t)
∼ κ2t

3/2, (3.41)

as t → +∞, for some positive constants κi, i = 0,1,2. We notice that the “mean second
moment” tends to 0 as t → +∞. The behavior of the mean second moment M2/M0 is then
comparable with the behavior of the energy (second moment) of the solutions to the inelas-
tic Boltzmann equation that decreases as t → +∞. The opposite will be true for a model
considered in Sect. 4. On the other hand, (3.41) shows that the behavior of the mean sixth
moment M6/M0 is similar to that of the high moments of the solutions of the Smoluchoski
equation that increase as t → +∞.

4 The Mass Dependence Case a = a(m,m′)

Consider now the problem (1.1)–(1.4) where the kernel a(y, y ′) only depends on the masses
of the particles, namely

a(y, y ′) = a(m,m′), (4.1)

and introduce the associated Smoluchowski equation

∂F

∂t
(t,m) = 1

2

∫ m

0
F(t,m − m′)F (t,m′)a(m − m′,m′) dm′

−
∫ ∞

0
F(t,m)F (t,m′)a(m,m′) dm′. (4.2)

For any function ψ ∈ L1(R3) we define the Fourier transform F and the inverse Fourier
transform F −1 by

ψ̂(η) = (F ψ)(η) =
∫

R3
ψ(p)e−ip·η dp,

(F −1ψ)(p) = (2π)−3
∫

R3
ψ(η)eip·η dp.

Theorem 4.1 For any continuous function a on R
3, homogeneous of degree θ−1, θ ∈

(0,∞), and such that ϕ := F −1(e−a(·)) ≥ 0, and for any solution F ≡ F(t,m) to the co-
agulation equation (4.2) with coagulation kernel a(m,m′), the function f (t,m,p) defined
by

f (t,m,p) = m−3θF (t,m)ϕ
( p

mθ

)
, (4.3)

is a solution of (1.1), (1.3), (1.4) for the same aggregation kernel.
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Remark 4.2 The functions defined on R
d that are the Fourier transform of non nonnega-

tive measures are, by a theorem of S. Bochner (see for example [25]), the so called positive
definite functions. Examples of such functions are e−β|p|r for all β > 0 and r ∈ (0,2]. We de-
duce that a(p) = |p|1/θ , with θ ≥ 1/2 are admissible examples in Theorem 4.1. For θ = 1/2
the velocity distribution function is then of Maxwellian type. In the case θ = 1 the velocity
distribution function is of the type Lynden-Bell obtained in [19]. Another example is
a(p) = |p1| + |p2| + |p3| for which θ = 1.

Remark 4.3 Notice that the initial data of the solutions (4.3) in Theorem 4.1 are of the form
f (0,m,p) = m−3θFin(m)ϕ

(
p/mθ

)
for some Fin. Theorem 4.1 is not therefore a general

existence result of solutions to the Cauchy problem associated to (1.1), (1.3), (1.4).

Proof of Theorem 4.1 We have to check that the function f (t,m,p) defined by (4.3) solves
(1.1), (1.3), (1.4). We start with writing

∂f

∂t
= m−3θϕ

( p

mθ

) ∂F

∂t

= m−3θϕ
( p

mθ

)[
1

2

∫ m

0
F(t,m − m′)F (t,m′)a(m − m′,m′) dm′

−
∫ ∞

0
F(t,m)F (t,m′)a(m,m′) dm′

]
. (4.4)

On the one hand, using that
∫

R3
ϕ(p) dp = F (ϕ)(0) = e−a(0) = 1,

the last term in (4.4) gives

m−3θϕ

(
p

mθ

)∫ ∞

0
F(t,m)F (t,m′)a(m,m′) dm′

= m−3θϕ

(
p

mθ

)
F(t,m)

∫ ∞

0
a(m,m′)F (t,m′)

∫
R3

(m′)−3θϕ

(
p′

m′θ

)
dp′

= f (t,m,p)

∫ ∞

0

∫
R3

a(m,m′)f (t,m′,p′) dp′. (4.5)

On the other hand, let us define the function

g(m,p) = m−3θϕ(p/mθ).

Using the definition of ϕ and the homogeneity of a, it satisfies for any 0 < m′ < m

ĝ(m,η) = ϕ̂(mθη) = exp(−a(mθη)) = exp(−ma(η))

= exp(−m′a(η)) exp(−(m − m′)a(η))

= ĝ(m′, η)ĝ(m − m′, η),

or coming back to the origin function

g(m,p) =
∫

R3
g(m′,p′)g(m − m′,p − p′) dp′.



444 M. Escobedo, S. Mischler

Using that identity in the first (gain) term in (4.4), we get

m−3θϕ
( p

mθ

)∫ m

0
F(t,m − m′)F (t,m′)a(m − m′,m′) dm′

= g(m,p)

∫ m

0
F(t,m − m′)F (t,m′)a(m − m′,m′) dm′

=
∫

R3

∫ m

0
F(t,m − m′)g(m − m′,p − p′)F (t,m′)g(m′,p′)a(m − m′,m′) dm′ dp′

=
∫

R3

∫ m

0
f (t,m − m′,p − p′)f (t,m′,p′)a(m − m′,m′) dm′ dp′. (4.6)

We conclude that f satisfies (1.1), (1.3), (1.4) by gathering (4.4), (4.5) and (4.6). �

Remark 4.4 Solutions of the form n(m, t)ϕ(m,v) or n(t,m)e−m|v|2 (which corresponds to
θ = 1/2) have been considered in previous references as for example [4, 5, 27]. Sometimes
this form is obtained from physical arguments, sometimes it is postulated as a simplifying
ansatz.

The previous Theorem is useful in order to prove the existence of self similar solutions
for some kernels a(m,m′) as it is seen in the following corollary.

Corollary 4.5 Suppose that a and θ are as in Theorem 4.1. Assume further that F is a
self similar solution of the coagulation equation with coagulation kernel a(m,m′). Then the
function f defined by (4.3) is a self similar solution of (1.1), (1.3), (1.4).

Proof of Corollary 4.5 The hypothesis on F means that for some functions �, ν(t) and μ(t)

it may be written as:

F(t,m) = ν(t)�(μ(t)m).

Therefore f is a self-similar function since it may be written as

f (t,m,p) = m−3θ ν(t)�(μ(t)m)ϕ
( p

mθ

)

= ν(t)μ(t)3θ (μ(t)m)−3θ �(μ(t)m)ϕ

(
μ(t)θp

(μ(t)m)θ

)

= ν(t)μ(t)3θ�
(
μ(t)m,μ(t)θp

)

with �(M,P ) = M−3θ�(M)ϕ(P/Mθ). �

Remark 4.6 The existence of self similar solutions of (1.1), (1.3), (1.4) corresponding to the
case θ = 1/2 of Corollary 4.5 had already been proved in [13].

Remark 4.7 Self similar solutions of the coagulation equation are well known to exist for
the cases a(m,m′) = 1, a(m,m′) = m + m′ and a(m,m′) = mm′. Their existence has been
proved in [10] and [12], for several other kernels with homogeneity λ < 1. In that case they
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are of the form:

F(t,m) = t−
2

1−λ �

(
m

t
1

1−λ

)
. (4.7)

We deduce that, under the assumption of the Corollary 4.5, and for these kernels a(m,m′)
with homogeneity λ < 1,

f (t,m,p) = t−
2

1−λ m−3θ�

(
m

t
1

1−λ

)
ϕ

( p

mθ

)
(4.8)

is a self similar solutions to (1.1), (1.3), (1.4). A straightforward calculation yields

Pk(t) =
∫

Rd

∫ ∞

0
|p|kf (t,m,p) dm dp

= t−
1−kθ
1−λ

∫
Rd

|P |kϕ(P ) dP

∫ ∞

0
Mkθ�(M) dM. (4.9)

As a consequence, we have P0 → 0, P1 → 0 and more generally Pk → 0 whenever k < θ−1

but Pk/P0 → ∞ for any k > 0 and Pk → ∞ whenever k > θ−1. The interpretation in terms
of the model is that the total number of particles in the gas and the total momentum of the
gas decrease and tend to zero, while, for instance, the mean second moment P2/P0 tends
to infinity as t tends to infinity. This behavior is quite similar to that of the solutions to the
Smoluchowski equation (where the mean momentum moment Pk/P0 → ∞ for any k > 0)
and is completely different to that discussed in Remark 3.11.

5 The Constant Case a = 1

We consider in this section the aggregation kernel a = 1. Equations (1.1), (1.3) (1.4) reads
then:

∂tf (t,m,p) = 1

2

∫
Rd

∫ m

0
f (t,m − m′,p − p′)f (t,m′,p′) dm′ dp′

− f (t,m,p)

∫
Rd

∫ ∞

0
f (t,m′,p′) dm′ dp′. (5.1)

The first result is on the existence of self similar solutions.

Theorem 5.1 Let � ∈ C1(R,R) such that:

lim
ζ→0,ξ→0

ζ�

( |ξ |2
ζ

)
= 0 (5.2)

and suppose that

g(y, x) = F −1
ξ L−1

ζ

(
2

2ζ�(
|ξ |2
ζ

) + 1

)
(5.3)
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satisfies g ∈ L1(R+ × R
d). Then, for all real positive numbers βi , i = 1, . . . , d the function

t−
d+4

2 g

(
m

t
,β1

p1√
t
, . . . , βd

pd√
t

)
(5.4)

is a self similar weak solution to (1.1), (1.3), (1.4) with a = 1. If moreover g ∈ C1(R+ ×R
d)

then it is a classical solution.

Remark 5.2 As it will be seen in Remark 5.3 below, it is easy to obtain different self similar
solutions of (5.1) using Theorem 5.1. Notice nevertheless that these self similar solutions
are not necessarily non negative.

Proof of Theorem 5.1 The formal argument leading to the expression (5.3) and condition
(5.2) is the following. If we look for a self similar solution of (5.1) of the form (5.4) the
function g must then solve:

−d + 2

2
g − y∂yg − 1

2
x · ∇xg = 1

2

∫
Rd

∫ y

0
g(y − y ′, x − x ′)g(y ′, x ′) dy ′ dx ′

− g

∫
Rd

∫ ∞

0
g(y ′, x ′) dy ′ dx ′. (5.5)

We integrate this equation with respect to x and y and obtain

∫
Rd

∫ ∞

0
g(y ′, x ′) dy ′ dx ′ = 2. (5.6)

We now Fourier transform with respect to x and Laplace transform with respect to y:

ζ∂ζ ĝ + 1

2
ξ · ∇ξ ĝ = 1

2
ĝ2 − ĝ. (5.7)

We divide by ĝ2 and define G = 1/ĝ:

ζ∂ζ G + 1

2
ξ · ∇ξG = G − 1

2
. (5.8)

The function G may then be any function of the form:

G(ζ, ξ) = ζ�

( |ξ |2
ζ

)
+ 1

2
(5.9)

for any arbitrary, derivable function �. Therefore we should have:

ĝ(ζ, ξ) = 2

2ζ�(
|ξ |2
ζ

) + 1
, (5.10)

with, due to (5.6):

lim
ζ→0,ξ→0

2

2ζ�(
|ξ |2
ζ

) + 1
= 2 ⇐⇒ lim

ζ→0,ξ→0
ζ�

( |ξ |2
ζ

)
= 0.
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It is then straightforward to check that, given any function � ∈ C1(R,R) satisfying (5.2)
the function G defined by (5.9) is such that G−1 satisfies (5.7). Therefore, if (5.3) defines a
function g ∈ L1(R+ × R

d), the function g satisfies (5.5) in the weak sense of distributions
in R

+ × R
d and the function (5.4) is a weak solution of (5.1). �

Remark 5.3 If �(z) = z + 1,

ĝ(ζ, ξ) = 2

2ζ(
|ξ |2
ζ

+ 1) + 1
= 2

2(|ξ |2 + ζ ) + 1

= L

(
F

(
e− y

2 e
− |x|2

4y

√
2
√

y

))

and then,

f (t,m,p) = t−(d+4)/2 1√
2
√

m
e− m

2t e− 1
4m

∑d
i=1 β2

i
p2

i (5.11)

is a self similar solution of (5.1). This is, up to a constant, the profile of the self similar so-
lution that appears in Theorem 5.4 below. It is possible to obtain other self similar solutions
of (5.1). Some of them are explicit others are not. If, for example, � ≡ 1 then g(y, x) =
e−y2

δx=0. Another explicit example is for �(z) = z which gives g(y, x) = √
πδy=0e

− |x|√
2 .

Notice that in all these three examples the solution g is non negative. On the other hand, if
we take �(z) = √

z, the inverse Laplace transform, let us call it h(y, ξ), is still explicit:

h(y, ξ) = L−1
ζ

(
2

2
√

ζ ξ 2
+ 1

)
=

√
ξ2√

π
√

y
− e

y

ξ2 Erfc(
√

y

ξ2 )

4ξ 2
. (5.12)

It remains to check that h(y, ·) has an inverse Fourier transform with respect to the variable
ξ . It is easily checked that, for all y > 0 fixed:

h(y, ξ) = O
(

ξ

y3/2

)
as ξ → 0,

h(y, ξ) =
1√
π

√
ξ2

y
− 1

4ξ 2
+ O

(
y

ξ 2

)
as |ξ | → +∞.

This function is then in L2(R) with respect to the ξ variable and has then an inverse Fourier
transform with respect to ξ which is g(y, x):

g(y, x) = F −1
ξ (h(y, ·))(x).

Moreover, for all y > 0, g(y, ·) ∈ L2(R) and the convolution of g(y, ·) with itself is well
defined

F
(
g(y − y ′, ·) ∗ g(y ′, ·)) (ξ) = h(y − y ′, ξ)h(y ′, ξ)

and ∫ y

0
F

(
g(y − y ′, ·) ∗ g(y ′, ·)) (ξ) dy =

∫ y

0
h(y − y ′, ξ)h(y ′, ξ) dy.
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Therefore,

∫
R

∣∣F
(
g(y − y ′, ·) ∗ g(y ′, ·)) (ξ)

∣∣ dξ

≤
∫ y

0

∫
R

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy =

6∑
k=1

Ik,

with

I1 :=
∫ y/2

0

∫
|ξ |≤y′1/2≤(y−y′)1/2

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′,

I2 :=
∫ y/2

0

∫
y′1/2≤|ξ |≤(y−y′)1/2

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′,

I3 :=
∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ |

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′,

I4 :=
∫ y

y/2

∫
|ξ |≤(y−y′)1/2≤y′1/2

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′,

I5 :=
∫ y

y/2

∫
(y−y′)1/2≤|ξ |≤y′1/2

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′,

I6 :=
∫ y

y/2

∫
(y−y′)1/2≤y′1/2≤|ξ |

∣∣h(y − y ′, ξ)h(y ′, ξ)
∣∣ dξ dy ′.

We must verify that each term is finite. Indeed, we have

I1 ≤ C

∫ y/2

0

∫
|ξ |≤y′1/2≤(y−y′)1/2

ξ 2

y ′3/2(y − y ′)3/2 dξ dy ′

≤ C

∫ y/2

0

min{y ′3/2
, (y − y ′)3/2}

y ′3/2(y − y ′)3/2 dy ′ < ∞;

I2 ≤ C

∫ y/2

0

∫
y′1/2≤|ξ |≤(y−y′)1/2

|ξ |
(y − y ′)3/2

×
(

1√
y ′|ξ | + 1

ξ 2
+ O

(
y ′

ξ 2

))
dξ dy ′

≤ C

y3/2

∫ y/2

0

∫
y′1/2≤|ξ |≤(y−y′)1/2

(
1√
y ′ + 1

|ξ | + 1

)
dξ dy

≤ C

y3/2

∫ y/2

0

∫
y′1/2≤|ξ |≤(y−y′)1/2

(
2√
y ′ + 1

)
dξ dy < ∞;

I3 ≤ C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ |

(
1√
y ′|ξ | + 1

ξ 2
+ O

(
y ′

ξ 2

))

×
(

1√
y − y ′|ξ | + 1

ξ 2
+ O

(
y − y ′

ξ 2

))
dξ dy ′
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≤ C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ |

(
1√

y ′√y − y ′|ξ |2 + 1

|ξ |3
(

1√
y − y ′ + 1√

y ′

)

+ 1

ξ 4
+ O

(
y ′

√
y − y ′|ξ |3

)
+ O

(
y − y ′
√

y ′|ξ |3
)

+ O
(

y + y2

|ξ |4
))

dξ dy

≤ C√
y

∫ y/2

0

1√
y ′

∫
y′1/2≤(y−y′)1/2≤|ξ |

dξ

|ξ |2 dy

+ C

∫ y/2

0

(
1√
y

+ 1√
y ′

)∫
y′1/2≤(y−y′)1/2≤|ξ |

dξ

|ξ |3 dy

+ C

∫ y/2

0

∫
y′1/2≤(y−y′)1/2≤|ξ |

dξ

|ξ |4 dy

≤ C√
y

∫ y/2

0

dy√
y ′√(y − y ′)

+ C

∫ y/2

0

(
1√
y

+ 1√
y ′

)
dy

y − y ′

+ C

∫ y/2

0

dy

(y − y ′)2
.

Similar estimates show that the integrals I4, I5 and I6 converge. The function
∫ y

0 h(y −
y ′, ξ)h(y ′, ξ) dy is then in L1(R) and has then an inverse Fourier transform which is

∫ y

0
(g(y − y ′, ·) ∗ g(y ′, ·))(ξ) dy.

In the second result of this section we obtain solutions of (5.1) for a particular class of
initial data and we describe their long time asymptotic behavior in terms of self similar
solutions (cf. Remark 5.5).

Theorem 5.4 Suppose that the initial data fin ∈ L1(Y ; k2
S(y) dy) is even, non negative and

such that
∫ ∞

0

∫
Rd

es0mfin(m,p) dp dm < +∞ (5.13)

for some s0 > 0. Suppose also that the function F0 defined as:

F0(ζ, ξ) = 1√
2π

∫ ∞

0

∫
Rd

e−ipξ e−mζ fin(m,p) dp dm (5.14)

satisfies:
∫

Rd

∫ ∞

−∞
|F0(u + iv, ξ)| dv dξ < ∞ (5.15)

when u > s0. Then the function

f (t,m,p) = F −1
(

L−1F
)
(t,m,p) (5.16)

F(t, ζ, ξ) = H 2
0

(H0 + (t/2))2( 1
F0(ζ,ξ)

− H0t/2
H0+(t/2)

)
, (5.17)
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with H0 := M0,0(0)−1 as defined in (2.6), is such that f ∈ C1((0,∞);L1(R+ × R
d)) and

satisfies (1.1), (1.2), (1.3), (1.4) with a(y, y ′) ≡ 1 for all t > 0 and almost every y ∈ R
+×R

d .
Furthermore, f satisfies

t (d+4)/2f (t, tm,
√

tp) ⇀ ϕ∞(m,p)

:= C1
e−C2m

√
m

d∏
i=1

√
C3,ie

−C2
3,i

|pi |2
m , (5.18)

= C1
e−C2m

√
m

(
d∏

i=1

√
C3,i

)
e

−∑d
i=1 C2

3,i

|pi |2
m (5.19)

in the weak sense of measures σ(M1(Y ),Cc(Y )), as t → +∞, where

C1 = 4

(2π)d/2M1,0(fin)
, C2 = 2

M1,0(fin)
, (5.20)

C3,i =
√

2M1,0(fin)

M0,0(fin)Ni(fin)
, Ni(fin) =

∫ ∞

0

∫
Rd

p2
i fin(m,p) dp dm. (5.21)

Remark 5.5 Theorem 5.4 shows that the solutions of (5.1), for the set of initial data satisfy-
ing the hypothesis, behave asymptotically when t → +∞ as one of the self similar solutions
obtained in Theorem 5.1. Notice indeed that (5.18) means that the solution f (t,m,p) be-
haves, in a weak sense, as the self similar solution:

t−(d+2)/2ϕ∞
(

m

t
,β1

p1√
t
, . . . , βd

pd√
t

)

as t → +∞. Notice also that this self similar solution is essentially the same as (5.11) in
Remark 5.3. It is also noteworthy that, among all the possible self similar solutions, the
solution f converges to one that is regular and non-negative.

Proof of Theorem 5.4 By Theorem 5.4, there exists a unique solution f of (5.1) in
C([0, T );L1(Y ; kS(y) dy)) ∩ L∞(0, T ;L1(Y ; k2

S(y) dy)) for all T > 0. Moreover, if the
initial data is non-negative so is the solution for all time. It turns out that (5.1) may be ex-
plicitly solved using Fourier transform with respect to p ∈ R and Laplace transform with
respect to m > 0. Let us then consider such a transform defined as:

F(t, ζ, ξ) = 1

(2π)d/2

∫ ∞

0

∫
Rd

e−mζ e−ipξf (t,m,p) dp dm. (5.22)

Due to the properties of the solution f we may then apply the transform (5.22) to both sides
of (5.1) and obtain the following Bernoulli equation:

∂tF (t, ζ, ξ) = 1

2
F 2(t, ζ, ξ) − M0(t)F (t, ζ, ξ), (5.23)

M0(t) = F(t,0,0). (5.24)



Scalings for a Ballistic Aggregation Equation 451

We first notice, taking ζ = ξ = 0 in (5.23), that M0(t) satisfies d
dt

M0(t) = − 1
2 M2

0 (t) from
where

M0(t) = 1

H0 + t/2
. (5.25)

The unique solution of (5.23) is the function F(t, ζ, ξ) given by (5.17). On the one hand, the
function t �→ (H0t/2)/(H0 + t/2) is strictly increasing with limit in infinity equal to H0, so
that for any δ ∈ (0,1) there exists T ∈ (0,∞)

∀t ∈ [0, T ] H0t/2

H0 + t/2
≤ H0(1 − δ), (5.26)

and on the other hand

|F(0, ζ, ξ)| ≤
∫ ∞

0

∫
R

f (0,m,p) dm dp = H−1
0 . (5.27)

Gathering (5.26) and (5.27) the fraction in the right hand side of (5.17) is well defined for
all t > 0. More precisely for any t ∈ [0, T ] there is δ = δ(t) > 0 such that

∣∣∣∣ 1

F(0, ζ, ξ)
− H0t/2

H0 + (t/2)

∣∣∣∣ ≥
∣∣∣∣ 1

F(0, ζ, ξ)

∣∣∣∣ − H0t/2

H0 + (t/2)

≥ |F(0, ζ, ξ)|−1 − H0(1 − δ)

≥ δ |F(0, ζ, ξ)|−1 . (5.28)

By the hypothesis on fin, for any fixed ξ ∈ R
d the function F0(·, ξ) is analytic in the

half plane Re(ζ ) > −s0, it tends towards zero when in the half plane Re(ζ ) ≥ −s0/2, ζ

tends two-dimensionally towards infinity. It immediately follows from (5.17) and (5.56)
that F(t, ·, ξ) satisfies the same properties for all t > 0 and ξ ∈ R

d as well as

∫
Rd

∫ ∞

−∞
|F(t, u + iv, ξ)| dv dξ < ∞ (5.29)

for all u > s0 for all t > 0. We deduce that for any t > 0 and almost every ξ ∈ R
d

∫ ∞

−∞
|F(t, u + iv, ξ)| dv < ∞ (5.30)

and therefore the function F(t, ·, ξ) is the Laplace transform of the function:

L−1(F (t, ·, ξ))(m) = 1

2πi

∫ x+i∞

x−i∞
emζ F (t, ζ, ξ) dζ

the integral being independent of x > s0. Notice that we have, for any x > 0:

1

2πi

∫ x+i∞

x−i∞

∫
Rd

|emζ F (t, ζ, ξ)| dζ dξ

= exm

2π

∫ ∞

−∞

∫
Rd

|F(t, x + iv, ξ)| dv dξ < ∞.



452 M. Escobedo, S. Mischler

The function ξ �→ 1
2πi

∫ x+i∞
x−i∞ emζ F (t, ζ, ξ) dζ is then integrable and we have:

f (t,m,p) = 1

(2π)d/2

∫
Rd

eipξ L−1(F (t, ·, ξ))(m)dξ

= 1

2πi

∫ x+i∞

x−i∞

∫
Rd

eipξ emζ F (t, ζ, ξ) dζ dξ. (5.31)

In order to study the behavior of f (t,m,p) as t → ∞ it is a classical argument to con-
sider the rescaled function ϕ associated to f by the relation

ϕ(t,M,P ) := t (d+4)/2f (t, tM,
√

tP ), (5.32)

so that

f (t,m,p) = t−(d+4)/2ϕ

(
t,

m

t
,

p√
t

)
. (5.33)

Taking the Fourier and Laplace transform in both side yields

F(t, ζ, ξ) = t−1�(t, tζ,
√

tξ ) (5.34)

with

�(t, ζ, ξ) = tH 2
0

(H0 + (t/2))2( 1
F(0,

ζ
t ,

ξ√
t
)
− H0t/2

H0+(t/2)
)
. (5.35)

Since we are interested in the long time behavior of �(·, ζ, ξ) for all ζ and ξ fixed , we may
write:

1

F(0,
ζ

t
,

ξ√
t
)

− H0t/2

H0 + (t/2)
= 1

F(0,
ζ

t
,

ξ√
t
)

− H0 + H 2
0

H0 + (t/2)

and consider the auxiliary function

�(t, ζ, ξ) = tH 2
0

((t/2))2( 1
F(0,

ζ
t ,

ξ√
t
)
− H0 + H 2

0
(t/2)

)

= 4H 2
0

t ( 1
F(0,

ζ
t ,

ξ√
t
)
− H0 + 2H 2

0
t

)

. (5.36)

We perform the following expansion up to the order o(1/t):

1

F(0,
ζ

t
,

ξ√
t
)

− H0 = ζ

t

∂F−1

∂ζ
(0,0,0) + ξ√

t
· ∇ξF

−1(0,0,0)

+ 1

2t

d∑
i,j=1

ξiξj

∂2F−1

∂ξi∂ξj

(0,0,0) + o

(
1

t

)
. (5.37)
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Since by hypothesis f is even with respect to p, we have

∂F

∂ξk

(0,0,0) = −i

∫ ∞

0

∫
Rd

fin(m,p)pk dp dm = 0

and then:

∂F−1

∂ξk

(0,0,0) = − 1

F(0,0,0)2

∂F

∂ξk

(0,0,0) = 0. (5.38)

We also have

∂2F

∂ξi∂ξj

(0,0,0) = −
∫ ∞

0

∫
Rd

pipjf (0,m,p) dp dm,

which with the help of (5.38) implies

∂2F−1

∂ξi∂ξj

(0,0,0) = −F−2(0,0,0)
∂2F

∂ξi∂ξj

(0,0,0)

= H 2(0)

∫ ∞

0

∫
Rd

pipjf (0,m,p) dp dm =: 2Bi,j . (5.39)

Since fin(m,p) is even with respect to the p variable we have Bi,j = 0 whenever i �= j .
Similarly, we compute

∂F

∂ζ
(0,0,0) = −

∫ ∞

0

∫
Rd

mf (0,m,p) dp dm,

which implies

∂F−1

∂ζ
(0,0,0) = − 1

F 2(0,0,0)

∂F

∂ζ
(0,0,0) =: A. (5.40)

Thanks to (5.37), (5.38), (5.39) and (5.40), we deduce that (5.36) reads now:

�(t, ζ, ξ) = 4H 2(0)

(ζ A + ∑
i Bi,ξ

2
i + 2H 2(0) + o(1))

from where

lim
t→+∞ �(t, ζ, ξ) = lim

t→+∞ �(t, ζ, ξ) = 4H 2(0)

Aζ + ∑
i Biξ

2
i + 2H 2(0)

=: �∞(ζ, ξ). (5.41)

In order to come back to the original variables, we recall that from standard integral calculus
for any C, D > 0

1

(2π)1/2

∫ ∞

0

∫
Rd

e−mζ e−ipξ e−Cme− |p|2
2Dm√

Dm
dp dm = 1

ζ + Dξ 2 + C
,

from where choosing C := 2H 2
0 /A and Di := Bi/A, we obtain



454 M. Escobedo, S. Mischler

(F −1 L−1) (�∞) = 4H 2
0

(2πm)1/2 A
e−Cm

d∏
i=1

e
− |pi |2

2Dim√
Di

= 4H 2
0 A d

2 −1

(2πm)1/2
e−Cm

d∏
i=1

e
− A

2m
| pi√

Bi
|2

√
Bi

= ϕ∞(m,p)

as defined in (5.18). Finally, (5.65) implies that ϕ(t, .) ⇀ ϕ∞ in the weak sense of measures,
which is nothing but (5.18). �

It is very easy to obtain a simplified version of Theorem 5.4 for (3.1)–(3.4) with
a(p,p′) = 1:

Theorem 5.6 Suppose that the initial data fin ∈ M1
2α(R

d), α ∈ N\{0,1} is non negative and
satisfies fin(p) = fin(−p) and let F0 be its Fourier transform:

F0(ξ) = F (f ) (ξ) = 1√
2π

∫
Rd

e−ipξfin(p) dp. (5.42)

Suppose moreover that
∫

Rd

|F0(ξ)| dξ < +∞. (5.43)

Then the function

f (t,p) = F −1(F )(t,p), (5.44)

F(t, ξ) = H 2
0

(H0 + (t/2))2( 1
F0(ξ)

− H0t/2
H0+(t/2)

)
, (5.45)

with H−1
0 := F0(0), is such that f ∈ C([0, T );M1(Rd)−weak)∩L∞(0, T ;M1

2α(R
d)), f ∈

C([0,+∞);L∞(Rd)) ∩ C([0,+∞) × R
d) and satisfies (3.1)–(3.4) with a(y, y ′) ≡ 1 for all

t > 0 and almost every y ∈ R
+ × R

d .
Furthermore, f satisfies

td/2f (t,
√

tp) ⇀ ϕ∞(p) (5.46)

in the weak sense of measures σ(M1(Y ),Cc(Y )), as t → +∞ where

ϕ∞(p) = F −1(�∞)(p), (5.47)

�∞(ξ) = 4H 2(0)∑d

i=1 Biξ
2
i + 2H 2(0)

, (5.48)

Bi =
∫

Rd

p2
i fin(p) dp. (5.49)

In particular, when d = 1:

ϕ∞(p) = 2

√
2π

M2(fin)
e−C1|p|. (5.50)



Scalings for a Ballistic Aggregation Equation 455

Proof of Theorem 5.6 Equation (3.1)–(3.4) may be explicitly solved using Fourier transform
with respect to p ∈ R. By Theorem 3.1 we already know the existence and uniqueness of a
solution f ∈ C([0, T );M1(Rd)−weak)∩L∞(0, T ;M1

2α(R
d)). Applying Fourier transform

to both sides of (3.1)–(3.4) we obtain the following Bernoulli equation:

∂tF (t, ξ) = 1

2
F 2(t, ξ) − M0(t)F (t, ξ), (5.51)

M0(t) = F(t,0). (5.52)

We first notice, taking ξ = 0 in (5.51), that M0(t) satisfies d
dt

M0(t) = − 1
2M2

0 (t) from where

M0(t) = 1

H0 + t/2
. (5.53)

It is then straightforward to solve (5.51) and obtain the function F(t, ξ) given by (5.45).
On the one hand, the function t �→ (H0t/2)/(H0 + t/2) is strictly increasing with limit in
infinity equal to H0, so that for any δ ∈ (0,1) there exists T ∈ (0,∞)

∀t ∈ [0, T ] H0t/2

H0 + t/2
≤ H0(1 − δ), (5.54)

and on the other hand

|F(0, ξ)| ≤
∫

Rd

f (0,p)dp = H−1
0 . (5.55)

Gathering (5.54) and (5.55) the fraction in the right hand side of (5.45) is well defined for
all t > 0. More precisely for any t ∈ [0, T ] there is δ = δ(t) > 0 such that

∣∣∣∣ 1

F(0, ζ, ξ)
− H0t/2

H0 + (t/2)

∣∣∣∣ ≥
∣∣∣∣ 1

F(0, ζ, ξ)

∣∣∣∣ − H0t/2

H0 + (t/2)

≥ |F(0, ζ, ξ)|−1 − H0(1 − δ)

≥ δ |F(0, ζ, ξ)|−1 . (5.56)

Therefore:

|F(t, ξ)| ≤ 1

δ
|F0(ξ)|

and (5.44) follows.

In order to study the behavior of f (t,p) as t → ∞ it is a classical argument to consider
the rescaled function ϕ associated to f by the relation

ϕ(t,P ) := td/2f (t,
√

tP ), (5.57)

so that

f (t,p) = t−d/2ϕ

(
t,

p√
t

)
. (5.58)
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Taking the Fourier and Laplace transform in both side yields

F(t, ξ) = t−1�(t,
√

tξ ) (5.59)

with

�(t, ξ) = tH 2
0

(H0 + (t/2))2( 1
F(0,

ξ√
t
)
− H0t/2

H0+(t/2)
)
. (5.60)

Since we are interested in the long time behavior of �(·, ξ) for all ξ fixed , we may write:

1

F(0,
ξ√
t
)

− H0t/2

H0 + (t/2)
= 1

F(0,
ξ√
t
)

− H0 + H 2
0

H0 + (t/2)

and consider the auxiliary function

�(t, ξ) = tH 2
0

((t/2))2( 1
F(0,

ξ√
t
)
− H0 + H 2

0
(t/2)

)

= 4H 2
0

t ( 1
F(0,

ξ√
t
)
− H0 + 2H 2

0
t

)

. (5.61)

We perform the following expansion up to the order o(1/t):

1

F(0,
ξ√
t
)

− H0 = ξ√
t

· ∇ξF
−1(0,0) + 1

2t

d∑
i,j=1

ξiξj

∂2F−1

∂ξi∂ξj

(0,0) + o

(
1

t

)
. (5.62)

Since by hypothesis fin is even with respect to p, we have

∂F

∂ξ
(0,0) = −i

∫
Rd

fin(p)p dp = 0

and then:

∂F−1

∂ξ
(0,0) = − 1

F(0,0)2

∂F

∂ξ
(0,0) = 0. (5.63)

We also have

∂2F−1

∂ξi∂ξj

(0,0) = −
∫

Rd

pipjf (0,p) dp dm,

which with the help of (5.63) implies

∂2F−1

∂ξi∂ξj

(0,0) = −F−2(0,0)
∂2F

∂ξi∂ξj

(0,0)

= H 2(0)

∫
Rd

pipjf (0,p)dp =: 2Bi,j . (5.64)
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Since fin(m,p) is even with respect to the p variable we have Bi,j = 0 whenever i �= j . We
denote Bi,i = Bi . Thanks to (5.62), (5.63) and (5.64), we deduce that (5.61) reads now:

�(t, ξ) = 4H 2(0)

(
∑d

i=1 Biξ
2
i + 2H 2(0) + o(1))

from where

lim
t→+∞ �(t, ξ) = lim

t→+∞ �(t, ξ) = 4H 2(0)∑d

i=1 Biξ
2
i + 2H 2(0)

=: �∞(ξ), (5.65)

and (5.65) implies that ϕ(t, .) ⇀ ϕ∞ = F −1(�∞) in the weak sense of measures, which is
nothing but (5.46).

When d = 1, we recall from standard integral calculus that for any C > 0

1√
2π

∫
R

eipξ dξ

1 + Cξ 2
=

√
π

2C
e

−| p√
C

|
,

from where for C = B/2H 2
0 we obtain

ϕ∞(p) = F −1(�∞)(p) = 2

√
π

B
H0e

−|
√

2H0√
B

p|

and (5.50) follows. �
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